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Connection Between Gaussian Periods and Cyclic Units 

By Emma Lehmer 

Abstract. This paper finds that all known parametric families of units in real quadratic, 
cubic, quartic and sextic fields with prime conductor are linear combinations of Gaussian 
periods and exhibits these combinations. This approach is used to find new units in the 
real quintic field for prime conductors p - n4 + 5n3 + 15n2 + 25n + 25. 

1. Introduction. The idea that it might be of interest to explore the connection 
between Gaussian periods and cyclic units arose from the obvious fact that for 
4p = L2 + 27 Shanks's "simplest cubic" [101 and the Gaussian cubic are related 
by a translation. Moreover, this is also the case for p = a2 + 16 for Marie Gras's 
"simplest quartic" [2] and the cyclotomic quartic, as well as the "simplest quadratic" 
in [10]. 

Since there were no known quintic units, while the cyclotomic quintic polynomial 
[6] and its discriminant [7] were given by the author many years ago, it seemed 
worthwhile to try to discover some quintic units as linear transforms of the periods 
for some sequence of primes. This was accomplished for primes of the form 

p = n4 + 5n3 + 15n2 + 25n + 25. 

Subsequently, it was shown by Rene Schoof and Lawrence Washington [91 that 
these were indeed fundamental units. 

In another direction, Marie Gras [1], and later Giinter Lettl [8], considered for 
4p = 1 + 27M2 a cubic whose roots are units, but which is no longer a translation 
of the Gaussian cubic. However, its roots are linear combinations of the roots of 
the Gaussian cubic and therefore generalized Gaussian periods. A similar relation 
holds between the roots of Marie Gras's quartic [2] for p = 1 + 16b2 and the 
cyclotomic quartic, except that the coefficients in the linear combination of the 
roots are excessively large, as we shall see in Section 4. Section 6 will be devoted 
to similar results for the sextic with 4p = L2 + 27, given by Marie Gras [3], [4]. 
We have not studied the case of 4p = 1 + 27M2, but we expect that there exists a 
similar relation. 

2. Notation. We will use the notation of cyclotomy as follows: p = ef + 1 is a 
prime, where e is the degree of the polynomial 

e-1 

(2.1) Fe(X) = JJ(x-r~j) 
j=o 
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with discriminant D(Fe), where the roots rqj of Fe (x) for j = 0, 1, .. , e - 1 are 
given by 

(2.2) 7= E p (j =0,1,...,e-1), 
iEC, 

where Cj is the jth coset of eth power residues and fp are the primitive pth roots 
of unity. Kummer also considered a generalized cyclotomy in which, with integer 
ci' 

e-1 

(2.3) Oj => Ci77i +j 
i=O 

He proved that for e a prime, all the factors of the discriminant and of the numbers 
represented by the polynomial whose roots are the generalized periods must be 
eth power residues of p. When e is composite, however, the polynomial may have 
exceptional factors which must divide the discriminant. In what follows we will be 
considering a special case of generalized periods Oj which are units. We will show 
that every known cyclic unit is a generalized Gaussian period and find the actual 
constants ci in (2.3). 

3. The Cubic Case. The Gaussian cubic for 4p = L2 + 27M2 is 

(3.1) F3(x) = x3 + Z2 (P 3 - [(L + 3)p-1]/27 

with discriminant D(F3) = p2M2. 
Shanks's "simplest" cubic is given by [10] 

(3.2) P3(y) = y3 _ ty2 - (t + 3)y - 1 

with D(P3) = (t2 + 3t + 9)2 =p2. 
If M = 1, then t = (L - 3)/2, D(F3) = D(P3), and as we have said in the 

introduction, P3(y) is a linear transform of F3(x), namely 

P3(y) = F3 Y - L ), 

so that 
L-1 

6 

If L = 1, then (3.1) becomes simply 

(3.3) F3(z) =z3 +Z2 _ 9M -x- M2 D(F3) 2M2 

while t = 3(9M - 1)/2 in (3.2) with D(P3) = 272p2 [8]. 
Hence, P3 can no longer be a linear transform of F3. However, the equation 

whose roots are 6i = 3(qi - ,i+?), namely 

(3.4) G3(z) = z3- 9pz - 27pM with D(G3) = 272p2, 

is a linear transform of P3(y). In fact, 

P3(y) = G3 Y - 9M- 1) 
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and hence in this case, 

(3.5) Oi = 3(qi -n+i)+ 9M - 1 
2 

Therefore, all the prime factors of numbers represented by 

(3.6) P3(y) = Y32 2(9M _ 1)y2-_ (9M + l)y-1 

are cubic residues of p, except 3 in case 3 t M. For example, for p = 331, M = 7, 
P3(1) = 33 7, P3(2) = -557, P3(3) = -7 157, P3(4) = -33 67, P3(5) = -7 383. 

4. The Quartic Case. The Gaussian quartic for p = a2 + 16b2 with a-1 
(mod 4) is 

(4.1) F4(z) = z4 + 3_ 3(p -l) 2 _ 3p-2pa-1 (p _ 1)2 - 4p(a-1)2 (4.1) F4 (x 8 1 6 +256 
with D(F4) = 4b6p3, while Marie Gras's quartic [2] is 

(4.2) P4(y) = y4 -ty3 -ry2 + ty + 1. 

She also defines 

(4.3) z2 = (t2 - 4r-8)/p and x2 +y2 = (t2 - 2r +4)/p. 

As in the cubic case, there are two cases according as a = 1 or b = 1. In both 
these cases, the field is totally real. The simplest case is when b = 1, so that 
p = a2 + 16 and t = a and r = 6 in (4.2), which becomes 

(4.4) P4(y) = y4 -ay3 -6y2 +ay+1, D(P4) = D(F4) =4p3. 

It is not hard to verify that 

(4.5) P4(y) = F4 y- a ) 

so that in this case, 
a-i 

Oi 77 + 

If a = 1, then p = 1 + 16b2, and (4.1) reduces to 

(4.6) F4(x) = x4 + x3 - 6b22 - b2 + b4 

while (4.2) has values of t and r that are surprisingly large. They are given by 
Marie Gras [2] for p < 10000. Since there are only five values of p < 10000 for 
which a = 1, we reprint the values of t from her tabie together with the values of 
z derived from her values of r from (4.3) as follows: 

p t z 
257 382352 23504 
401 80 10 
577 123975327936 5159943648 

1297 1194681 33159 
1601 575066704688492400 14372175520538672 

The discriminant D(P4) is 

p3z) [(t2 + 16 2) 22 
(4.7) D (P4)=-1 p - 4t zi 
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where the expression in square brackets appears to be a square. For example, for 
p = 257, D(P4) = 2573 220 132 1132 16212 .101412. We note that all the odd 
prime factors are quadratic, but not quartic residues of 257, and therefore they are 
all exceptional. For p = 401 we have D(P4) = 2454 4013 . 4212, and 2 and 421 are 
both quartic residues of 401. 

The roots Oi of (4.2) are negative reciprocals in pairs. Therefore, we can order 
the 0's so that 

(4.8) 0002 = 0103 = 1. 

Marie Gras [2] gives two fundamental relations in terms of x, y, z defined in (4.3) 
for cyclic quartic fields, which in our case can be written: 

(4.9) t2 + pZ2 + 16 = 2p(x2 + y2), -tz = (X2 _ y2) - 8bxy. 

We next let 

(4.10) Oi = Cor7i + cl hi+l + c277i42 + C377i+3 (i = 0,1,2,3). 

Then (4.8) implies 

(4.11) COC2 + c1c3 = 2(b2t2 - 1)/p. 

Using this and the fact that Z3o c, = -t and >3__(-l)'ci = -z, and that 

Z c2 = [p(t2 + 2z2) + t2 + 16]/4p, 

we find that (4.9) is satisfied with co - c2 = x and c1 - C3 = y, so that 

2co = x + (z -t)/2, 2c1 = y-(z + t)/2, 

(4.12) 2c2 = -x + (z - t)/2, 2c3 = -y - (z + t)/2. 

The c's given below were actually computed by D. H. Lehmer as a solution of the 
system (4.10), using his multiprecision package to get the roots of the two equations 
and then solving the system for the c's. 

p 257 401 577 1297 1601 
- co 81543 14 30421906939 318850 152504156397432653 
- c1 110033 21 27917477683 278821 135156198948853027 
- c2 97881 21 34145728853 295070 142215283707082883 
- C3 92895 24 31490214461 301940 145191065635123837 

These values of ci were subsequently checked by (4.2). 

5. The Quintic Case. As was mentioned in the introduction, no quintic units 
were known, but the Gaussian quintic was given in [6] in terms of the Dickson form 
in four variables (x, u, v, w), which represents 

(5.1) 16p = x + 50u2 + 50 2 + 125w2 

with the side conditions 

(5.2) xw = v-t2 - 4uv, x 1 (mod 5). 
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After some experimentation it was decided to consider the special case in which 
x, u, v, w were expressed in terms of a single variable n as follows (where () is the 
Legendre symbol): 

(5.3) v=-(n+1), u=2+n, w= - 

so that u + v = 1 and x is given by (5.2) as 

(5.4) - (5) (4n2 + lOn + 5), 

so that, using (5.1), we have 

(5.5) x2 = 16p - 100n2 - 300n - 375. 

Hence, p is given by the quartic 

(5.6) p = n4+ 5n3 + 15n2 + 25n + 25. 

We can now write the polynomial F5 (t) given in [6] in terms of n as follows: 

F5(t) = t5 + t4 - (p- l)t [6p - 2 - () p(4n2 + lOn + 5)]t2 

( ) + 125 [_3p2 + p(25n2 + 75n + 119) + 1 + 2 () p(4n2 + iOn + 5)] t 

+ 1 {-15p2 + 5p(25n2 + 75n + 123) + 1 
3125 

+ (-) [p2(4n2 + iOn - 45) + 5p(-5n3 + 29n2 + 160n + 255)]}. 

It can be verified that the linear transformation 

t = y - [(5 _ n ]/5 

leads to 

P5(y) y5 + n2y4 - 2(n3 + 3n2 + 5n + 5)y3 + (p - 4n2 - iOn - 20) y2 

(5.8) + (n3+ 4n2 + lOn + 10)y + 1 

with 

0i (5 77i + [( -n ]/5. 
The discriminant of F5 (t), given in [7], reduces in this case to 

(5.9) D(F5) = D(P5) = (n3 + 5n2 + iOn + 7)2p4. 

Hence all the prime factors of n3 + 5n2 + iOn + 7 are quintic residues of p and 
so are the divisors of all the numbers represented by either equation. We give a list 
of P5(y), together with their discriminants, for all appropriate primes p < 1000: 

p n Ps(Y) D/p2 P5(1) 
11 - 2 y5+ 4y4 + 2y3 - 5y2 - 2y + 1 1 1 
31 - 3 y5 + 9y4 + 20y3 + 5y2 _ lly + 1 5 52 
71 1 y5 + y4 - 28y3 + 37y2 + 25y + 1 23 37 

101 - 4 y5 + 16y4 + 62y3 + 57y2 - 30y + 1 17 107 
191 2 y5+ 4Y4 - 70Y3+ 135y2 + 54y + 1 5.11 53 
631 - 6 y5+ 36y4 + 266y3 + 527y2 - 122y + 1 89 709 
941 4 y5 + 16y4 - 274y3 + 817y2 + 178y + 1 191 739 
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There may possibly be a second case for which 

p = 25n4 - 25n3 + 15n2 - 5n + 1, 

but we have not been able to find the coefficients, which could be quite large in this 
case. 

6. The Sextic Case. The sextic period polynomials were given in [5]. Recently, 
Marie Gras [4] has given a sextic whose roots are units in a real sextic field. In the 
simplest case, in which 

(6.1) 4p = L2 + 27, p 1 (mod 12) and L 1 (mod 6), 

her equation can be written with n = ILI as 

62) p 6(_3)y55n+3 4 2 3+5n-3 2+(n+3)y+l 
(6.2) P6 (Y)=6- -3)2Y 2 

O3+5 ~ n+3y+1 

If we let pj be the roots of the cubic (3.2) with t = (L - 3)/2, then it was shown 
in [4] that 

(6.3) Pi = -(20j+ )/(Oi+20i)i 

where Oi are the roots of (6.2). Therefore, we have 

(20i + 1)/[(0i + 2)0j] = (20i+3 + 1)/[(0-+3 + 2)0i+3], 

which leads to 

(6.4) Oi + Oi+3 + 2 = -2Oi~i+3. 

If we now let 7 be the roots of the Gaussian cubic (3.1), then the roots of the 
period sextic rj satisfy 

(6.5) ?7 + 77+3 = Tl? 

Experiments show that 

L 6 7 _ 2, - .1 if L > O 
(6.6) i L + 1 (i A j) 

-L+ 
6 + 2rqi + 7 if L < O 

This can be verified, using (6.4) as follows. 
First suppose that L > 0; then by (6.4) and (6.6) we have 

-20ioi+3 = _ -2(r77 + ri') -t 2-L7 - 2(-1- ) + 2 

_L+5 
=3 + 277k, 

- 3~ ~~~~ F 

=- kjo (L+6 +k) =F3 (-J6 ) = -1. 
-1=0 k=O 

This can be easily verified by substituting -(L + 5)/6 into (3.1). 
Similarly, for L < 0 we find that F3((-L + 1)/6) = 1. 
It is possible that there might exist another case of the sextic for 4p = 1 + 27M2 

corresponding to the second cubic case, but one may expect very large coefficients 
in that case. 
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7. The Octic Case. In this case we consider primes of the form p = n4 + 16 
which implies that p = (n2 - 4)2 + 2(2n)2. We let 

(7.1) Oi = i + li+2 - (n2 - 1)/4 (i = 0(1)7). 

Then obviously Oi + Oi+4 = Oi+2 + Oi+6 and it can be easily seen that 0i~i+2 = 

l/0i+40i+6, so that the 02i and the 02i+1 respectively satisfy the two quartics 

x4 + (n2 _ Vi)X3 + 1 
[n4 + 4 - Vp(n2 + 2)] X2 +1 [n4- 2n2 + 16 - Vp(n2- 2)]x + 1 

and 

x4 + (n2 + /;fi)X3 + 1 
[n4 + 4 + /p-(n2 + 2)] X2 +1 [n4- 2n2 + 16 + /;pi(n2- 2)]x + 1, 

whose product is 

p8 () = X8 + 2n2X7 + (p - 28)X6 - (p + 14n2)X5 -[p(n + 3) - 70]x 

(7.2) + [14n2- p(n 2- 4)]X3 + (5p - 28)X2 + (p - 2n2)X + 1, 

so that the 0's are units. We note that P8(-1) = -n4. 
The discriminant of this equation can be written as 

D =D D2 D 2- . D2 D4i 

where 
7 

Dj= ( - Oi+j) (i = 1(1)4). 
i=l1 

We find that 

Di = p[(n - 4)p + 6n 3- 24n + 68], D2 = n4p, 

D3 = p[-(n + 4)p - 6n3 + 24n + 68], D4 = 16n4p, 

so that D1 and D3 interchange with the change of sign of n. All prime factors of 
D1 and D3 are octic residues of p, but 2 and n are only quadratic. For example, 
for p = 641, n = 5 and D1/p = 13 103, D3/p = 13 487. 

It remains to be seen whether the 0's are actually relative units in the field 
defined by (7.2), but we expect this to be the case. 
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